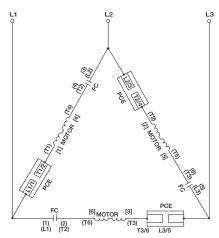
PCEC Hydraulic Elevator Softstarters up to 150 HP @ 480 VAC


Unique advantages not found in electromechanical or other solid state starters

PCEC Hydraulic Elevator Softstarters are wired "inside the delta" for more efficient operation and retrofit

The PCE Hydraulic Elevator Softstarter and PCEC Panel Solution by Sprecher+Schuh are designed to simplify installation, set-up, and typical operation of motors that drive hydraulic elevators and escalators. This solid state starter solution is designed to operate 3 phase standard squirrel cage induction motors and can be connected to a 6 or 12 lead Wye-Delta (Star-Delta) or standard 3 or 9 lead motors. Through the use of LINE or INSIDE-THE-DELTA control, the solid state solution can provide ultimate control of the motor. The advantages of a solid state solution include the following:

Provides smooth motor starting

- Decreases current surges on weak electrical systems
- Reduced starting torque of the motor helps to reduce mechanical stress on system components
- Helps meet both local and regional electrical codes when reduced voltage starting is a requirement
- Eliminates voltage and current spikes associated with traditional Wye-Delta (Star-Delta) starters
- Maximizes motor life due to reduced electrical strain
- Lowers general system maintenance requirements for improved uptime

The PCEC panel solution provides a standard PCE controller and a factory coordinated fault contactor on a common mounting plate for ease of installation. The PCE controller utilizes software optimized for the elevator industry along with a built-in selectable Class 10, 15 and 20 overload relay and SCR bypass to control all three phases. The pre-wired control harness (3 ft / ~1m flying leads) is supplied to simplify wiring into current installations while the mounting plate holes are the same as many standard Wye-Delta electro-mechanical starter panels. To insure start up performance both the PCE controller and PCEC panel assembly are factory tested before shipping.

The result is a quick and easy starter solution for the elevator and escalator industries.

Microprocessor control provides precision operation

PCEC softstarters are under full microprocessor control, which limits starting current to the preset adjustable value. Current never exceeds the preset limit. Microprocessor control also provides finer increments of adjustment, facilitating smooth, repeatable, and accurate starting characteristics, independent of component aging and varying environmental conditions.

LED diagnostic display

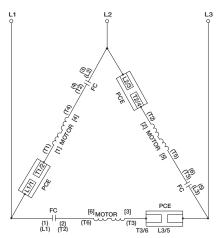
An LED display indicates operating status and fault condition (overload, over temperature, phase reversal/phase loss, phase imbalance, shorted SCR, start fault). This enables speedy diagnosis and quick resolution of problems.

Standard fault contactor

The PCEC panel solution is equipped with a standard fault contactor which isolates one side of the motor windings from the line power in case of softstarter fault or motor overload. Current flow is prevented by this mechanical isolation in addition to the solid state SCRs.

UL/CSA Elevator Ratings

The PCEC Softstarters are UL Listed and cUL Listed (Canadian Standards per UL 508 and CS C22.2 No. 14-95) as solid state motor controllers in File E96956. They are also UL Listed and cUL Listed per UL 508 and CAN/ CSA B44.1-96 as elevator controllers in File E3125.


PCEC Hydraulic Elevator Softstarters up to 150 HP @ 480 VAC

Unique advantages not found in electromechanical or other solid state starters

PCEC Hydraulic Elevator Softstarters are wired "inside the delta" for more efficient operation and retrofit

The PCE Hydraulic Elevator Softstarter and PCEC Panel Solution by Sprecher+Schuh are designed to simplify installation, set-up, and typical operation of motors that drive hydraulic elevators and escalators. This solid state starter solution is designed to operate 3 phase standard squirrel cage induction motors and can be connected to a 6 or 12 lead Wye-Delta (Star-Delta) or standard 3 or 9 lead motors. Through the use of LINE or INSIDE-THE-DELTA control, the solid state solution can provide ultimate control of the motor. The advantages of a solid state solution include the following:

Provides smooth motor starting

- Decreases current surges on weak electrical systems
- Reduced starting torque of the motor helps to reduce mechanical stress on system components
- Helps meet both local and regional electrical codes when reduced voltage starting is a requirement
- Eliminates voltage and current spikes associated with traditional Wye-Delta (Star-Delta) starters
- Maximizes motor life due to reduced electrical strain
- Lowers general system maintenance requirements for improved uptime

The PCEC panel solution provides a standard PCE controller and a factory coordinated fault contactor on a common mounting plate for ease of installation. The PCE controller utilizes software optimized for the elevator industry along with a built-in selectable Class 10, 15 and 20 overload relay and SCR bypass to control all three phases. The pre-wired control harness (3 ft / ~1m flying leads) is supplied to simplify wiring into current installations while the mounting plate holes are the same as many standard Wye-Delta electro-mechanical starter panels. To insure start up performance both the PCE controller and PCEC panel assembly are factory tested before shipping.

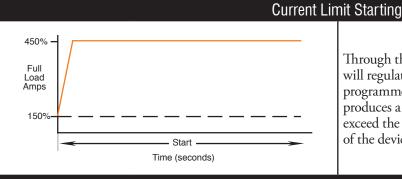
The result is a quick and easy starter solution for the elevator and escalator industries.

Microprocessor control provides precision operation

PCEC softstarters are under full microprocessor control, which limits starting current to the preset adjustable value. Current never exceeds the preset limit. Microprocessor control also provides finer increments of adjustment, facilitating smooth, repeatable, and accurate starting characteristics, independent of component aging and varying environmental conditions.

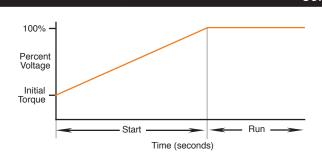
LED diagnostic display

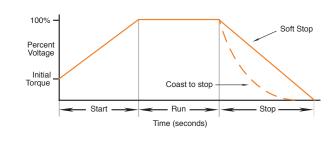
An LED display indicates operating status and fault condition (overload, over temperature, phase reversal/phase loss, phase imbalance, shorted SCR, start fault). This enables speedy diagnosis and quick resolution of problems.


Standard fault contactor

The PCEC panel solution is equipped with a standard fault contactor which isolates one side of the motor windings from the line power in case of softstarter fault or motor overload. Current flow is prevented by this mechanical isolation in addition to the solid state SCRs.

UL/CSA Elevator Ratings


The PCEC Softstarters are UL Listed and cUL Listed (Canadian Standards per UL 508 and CS C22.2 No. 14-95) as solid state motor controllers in File E96956. They are also UL Listed and cUL Listed per UL 508 and CAN/CSA B44.1-96 as elevator controllers in File E3125.


Through the use of internal current sensors, the PCEC will regulate the current level applied to the motor over the programmed period of time. This type of motor control produces a slow start and insures that the current does not exceed the programmed level. This is standard configuration of the device and aligns well with traditional applications.

Soft Start

During Soft start, the voltage is ramped from an initial set point to full voltage over the programmed period of time. This type of motor control produces a smooth start in less time than the current limit setting, however the current is not restricted.

Soft Stop

Soft stop provides the ability to ramp down the voltage applied to the motor over a programmed period of time. The result is a smooth stop.

Diagnostics

Overload	The built in motor overload provides protection of the motor for over current conditions. This protection feature offers a user selectable setting called the trip class, which can be used to accommodate different applications and motor types. When the motor draws more than the nominal value of current for a period of time, the device will fault on a motor overload fault.
Over Temperature	The product includes a built in self monitoring method for detecting a SCR over-temperature condition. If the internal temperature exceeds a design threshold the device will fault on a SCR Overtemp fault.
Phase Reversal	The user can select the phase relationship of the incoming power. If this phase relationship changes, the device will fault indicating a problem.
Phase Loss/Open Load	When any one of the incoming 3 phases are lost, the controller will fault indicating a phase loss condition has occurred.
Phase Imbalance	When enabled, this motor protection feature will detect if a phase imbalance condition exists and fault the unit. A phase imbalance is defined as a 65% differential between the highest and lowest phase for more than 3 seconds.
Shorted SCR	Each time the PCEC initiates a start, it checks to see if the SCR's are operating correctly. If the controller is unable to properly turn on and off any one of the SCR's, the device will fault on a Shorted SCR fault.

Frame Size 1 - 32...64 Amp

Frame Size 2 - 74...147 Amp

Frame Size 3 - 234 Amp

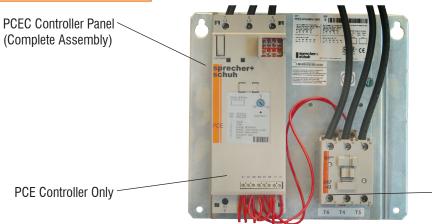
PCEC Controller Panel - 120V Control Voltage 40

	DELTA Connected - 6 Wire ❷					Line Connected - 3 Wire @			re @	Size	With 120VAC 50/60 Hz ❷❷
IV	Maximum Horsepower Overlos			Overload	N	laximum l	lorsepowe	er	Overload	Frame S	Control Voltage
200V	240V	480V	575V	Range ①	200V	240V 480V 575V		575V	Range 0	Fra	Catalog Number
10	10	20	30	10.932.9	5	5	10	15	6.319	1	PCEC-032-600V-120V
15	15	30	40	1751	7.5	10	20	25	1030	1	PCEC-051-600V-120V
20	20	40	60	21.364	10	10	25	30	12.337	1	PCEC-064-600V-120V
20	25	50	60	24.774	10	15	30	40	14.343	2	PCEC-074-600V-120V
30	40	75	100	34.7104	15	20	40	50	2060	2	PCEC-104-600V-120V
40	50	100	150	49147	25	30	60	75	28.385	2	PCEC-147-600V-120V
75	75	150	200	59234	40	50	100	125	34135	3	PCEC-234-600V-120V @

PCEC Controller Panel - 230V Control Voltage 46

	DELTA Connected - 6 Wire ❷					Line Connected - 3 Wire ❷			re @	Size	With 230VAC 50/60 Hz ❷❸
IV	Maximum Horsepower Overloa			Overload	IV	Maximum Horsepower		Overload Range 1		Control Voltage	
200V	240V	480V	575V	Range 0	200V	200V 240V 480V		575V	Range ①	Fra	Catalog Number
10	10	20	30	10.932.9	5	5	10	15	6.319	1	PCEC-032-600V-230V
15	15	30	40	1751	7.5	10	20	25	1030	1	PCEC-051-600V-230V
20	20	40	60	21.364	10	10	25	30	12.337	1	PCEC-064-600V-230V
20	25	50	60	24.774	10	15	30	40	14.343	2	PCEC-074-600V-230V
30	40	75	100	34.7104	15	20	40	50	2060	2	PCEC-104-600V-230V
40	50	100	150	49147	25	30	60	75	28.385	2	PCEC-147-600V-230V
75	75	150	200	59234	40	50	100	125	34135	3	PCEC-234-600V-230V 6

- Motor FLA must fall within the specified range to operate correctly.
- 2 The PCEC Controller panel powerwire jumpers and parameter DIP switch settings are shipped in the DELTA connection mode by default. LINE connection requires the power wires to be reconfigured and DIP Switch #15 to be programmed for LINE connection mode by the customer.


 Internal fan is optional for PCEC-032...064. See page D19 to purchase
- separately. All other PCEC units have internal fan as standard.

D60

- Purchase additional PCE Auxiliary Contact Blocks separately. See page D30. One Auxiliary Contact Block (one or two pole) may be mounted on the right side of the PCE controller.
- Separate 120V or 240V single phase is required for PCEC fan operation.
- The PCEC Hydraulic Elevator duty rating is 80 starts per hour at 50% duty cycle (160 calls per hour). Starts per hour are based on when the motor starts, the motor only runs on "up" calls. Installing an optional fan (PCV-64) is recommended for PCEC-032A...064A for maximum starts per hour performance. All other PCEC units have an internal fan as standard.

Series PCEC

Fault Contactor (FC)

PCEC-074-600V-120V

Replacement Parts

Complete Assembly (For Reference Only)	PCE Controller Only		PCE Fans	Fault Contactor		Fault Contactor	Coil
PCEC-032-600V-120V	PCE-032-600V			CA7-37-00-120			
PCEC-051-600V-120V	PCE-051-600V		PCV-064 (optional)	CA7-37-00-120		TC473	
PCEC-064-600V-120V	PCE-064-600V		(optional)	CA7-37-00-120			
PCEC-074-600V-120V	PCE-074-600V PCE-104-600V			CA7-43-00-120		TD473	
PCEC-104-600V-120V	PCE-104-600V PCE-147-600V		PCV-147	CA7-60-00-120	See	TE473	See
PCEC-147-600V-120V	PCE-147-600V			CA7-85-00-120	Section A	TE473	Section A
PCEC-234-600V-120V	Complete Device	PCE-234-600V				CA9-TG907	
	Control Module	PCE-234	PCV-234	CA9-190-11-120W			
	Power Pole	PFL-0135-600V •	PUV-234				
	Terminal Cover	PFT-0135					
PCEC-032-600V-230V	PCE-032-600V PCE-051-600V			CA7-37-00-220W		TC296	
PCEC-051-600V-230V			PCV-064 (optional)	CA7-37-00-220W			
PCEC-064-600V-230V	PCE-064-600V		(optional)	CA7-37-00-220W	1		
PCEC-074-600V-230V	PCE-074-600V			CA7-43-00-220W		TD296]
PCEC-104-600V-230V	PCE-104-600V		PCV-147	CA7-60-00-220W	See Section	TE296	See
PCEC-147-600V-230V	PCE-147-600V	PCE-147-600V		CA7-85-00-220W	A	TE296	Section A
	Complete Device	PCE-234-600V					
PCEC-234-600V-230V	Control Module	PCE-234	PCV-234	CA9-190-11-120W		CA9-TG907	
PUEU-234-000V-230V	Power Pole	PFL-0135-600V ⊙	FUV-234	GA9-190-11-120W		GA9-IU9U/	
	Terminal Cover	PFT-0135					

Optional Accessories

See page D30 for PCE Controller Auxiliaries

See page A47 for Fault Contactor Front and Side Mount Auxiliaries

See page D19 for Protection Modules

See page D19 for Internal Fan

Electrical

Power Circuit		UL/cUL/CSA	IEC			
Rated Operational Voltage		200600V AC	200500V~			
Rated Insulation Voltage		600V AC	500V~			
Dielectric Withstand		2200V AC	2500V~			
Repetitive Peak		200600V AC: 1600	500V~: 1600			
Rated Impulse Voltage		6 kV				
Over-voltage Category		I	II			
Number of Poles		Equipment designe	signed for 3 phase only			
Operating Frequency		50/6	0/60 Hz			
		32/51/64	AC-53b: 3.5-15:3585			
Controller Utilization Category		74/104/147	AC-53b: 4.5-30:1770			
		234	AC-53b: 3.5-30:1770			
Overload Current Range (Amps)		LINE	DELTA			
	32	6.319	10.932.8			
	51	1030	1751			
	64	12.337	21.364			
	74	14.343	24.774			
	104	2060	34.7104			
	147	28.385	49147			
	234	34135	59234			
Control Circuit		UL/cUL/CSA	IEC			
Rated Operational Voltage		100120 V AC, 200240V AC	120~, 240~			

Control Circuit	UL/cUL/CSA	IEC			
Rated Operational Voltage	100120 V AC, 200240V AC	120~, 240~			
Rated Insulation Voltage	NA	300V~			
Dielectric Withstand	NA	3000V			
Rated Impulse Voltage		3kV			
Operating Frequency	50/60 Hz				
	32/51/64	215 mA @ 120 V AC , 180 mA @ 240 V AC			
Control Power Requirements	74/104/147	200 mA @ 120 V AC , 100 mA @ 240 V AC			
	234	200 mA @ 120 V AC , 120 mA @ 240 V AC			
	32/51/64	NA			
Fan Power Requirements	74/104/147	NA			
	234	20 VA			

Electrical (continued)

Short Circuit Performance	Tyl	pe 1
Device Current Rating	Max Fuse Size and Type	Max Available Fault Rating
32	70 A - RK5	5 kA
32	125 A - K5	5 kA
51	125 A - RK5	5 kA
31	200 A - K5	10 kA
64	125 A - RK5	5 kA
04	200 A - K5	10 kA
74	150 A - RK5	5 kA
74	250 A - J	10 kA
104	200 A - RK5	5 kA
104	400 A - J	10 kA
1.47	250 A - RK5	10 kA
147	400 A - J	10 kA
224	400 A - RK5	10 kA
234	450 A - K5	10 kA

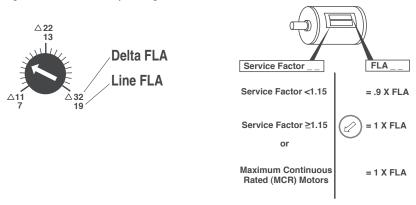
Auxiliary Contacts (Fault and Aux#1)	UL/cUL/CSA	IEC
Rated Operational Voltage	250V AC / 30V DC	250V~ / 30V DC
Rated Insulation Voltage	250V	250V~
Rated Impulse Voltage	NA	4kV
Dielectric Withstand	1500V AC	2000V~
Operating Frequency	50/6	60 Hz
Utilization Category	D300	AC-15 / DC
Type of Control Circuit	Electromaç	gnetic Relay
Number of Contacts		1
Type of contacts	Normally (Open (N.O.)
Type of current	AC	C/DC
Rated Operational Current (Max.)	0.6 A @ 120 V~ a	and 0.3 A @ 240V~
Conventional Thermal Current (lth)	1 /	Amp
Make/Break VA	433	2/72

Mechanical

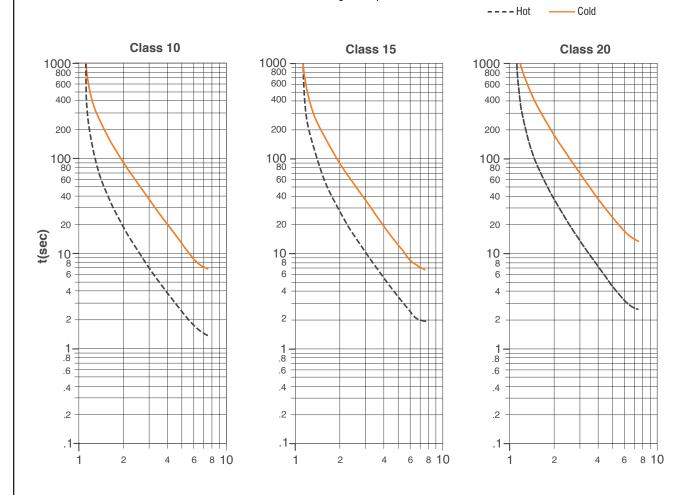
Resistance to Vibration	Operational	1.0 G Peak, 0.15 mm (0.006 in) displacement	
	Non-operational	2.5 G Peak, 0.38 mm (0.015 in) displacement	
Resistance to Shock	Operational	15 G	
	Non-operational	5.5 G	

Environmental

_ 050°C (32122°F) Open
040°C (32104°F) Enclosed
2000 m (6560 ft)
595% (non-condensing)
2

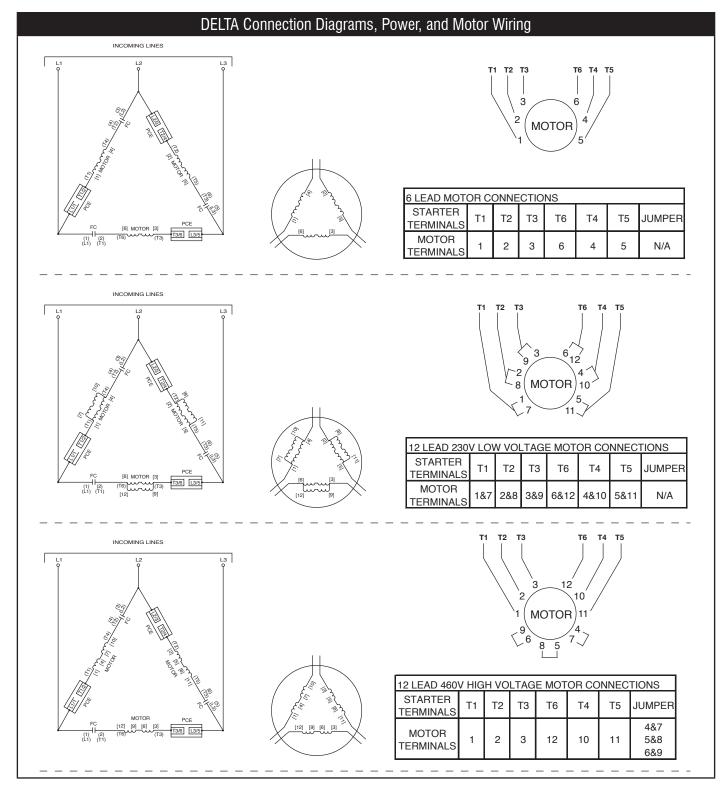

UL/CSA Elevator Ratings

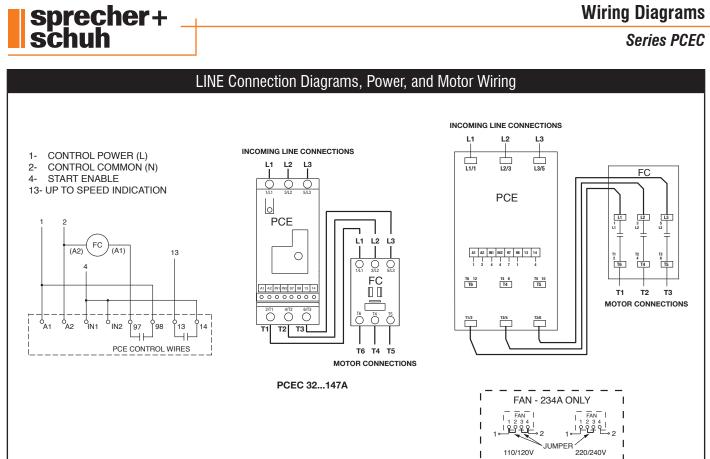
The PCEC Softstarters are UL Listed and cUL Listed (Canadian Standards per UL 508 and CS C22.2 No. 14-95) as solid state motor controllers in File E96956. They are also UL Listed and cUL Listed per UL 508 and CAN/CSA B44.1-96 as elevator controllers in File E3125.


Motor FLA Adjustments

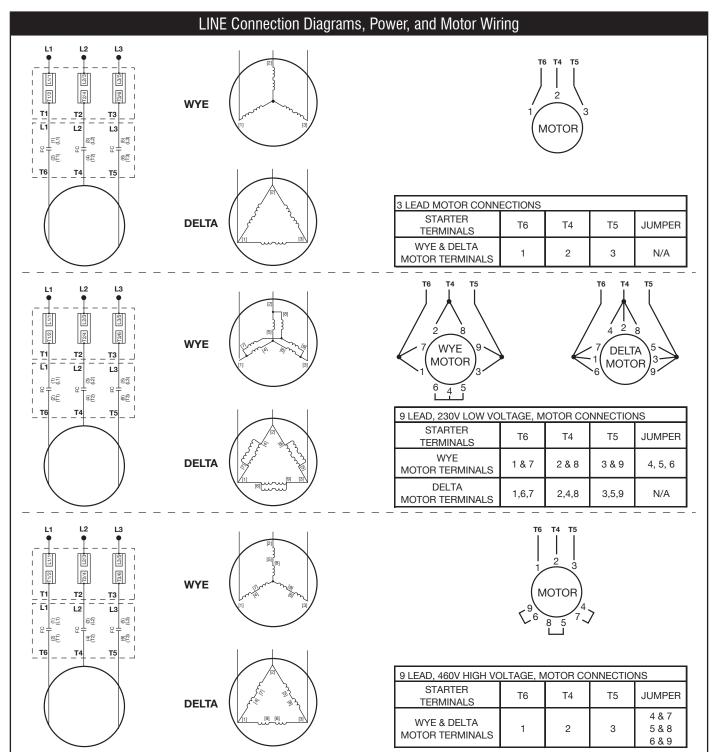
The front of the PCE controller contains a dial which is used for setting the actual FLA of the motor. The label is designed to accommodate motors connected in the LINE or DELTA mode. To determine the proper setting, look at the motors nameplate and set the dial accordingly. The dial setting can be modified depending on the service factor of the motor as shown:

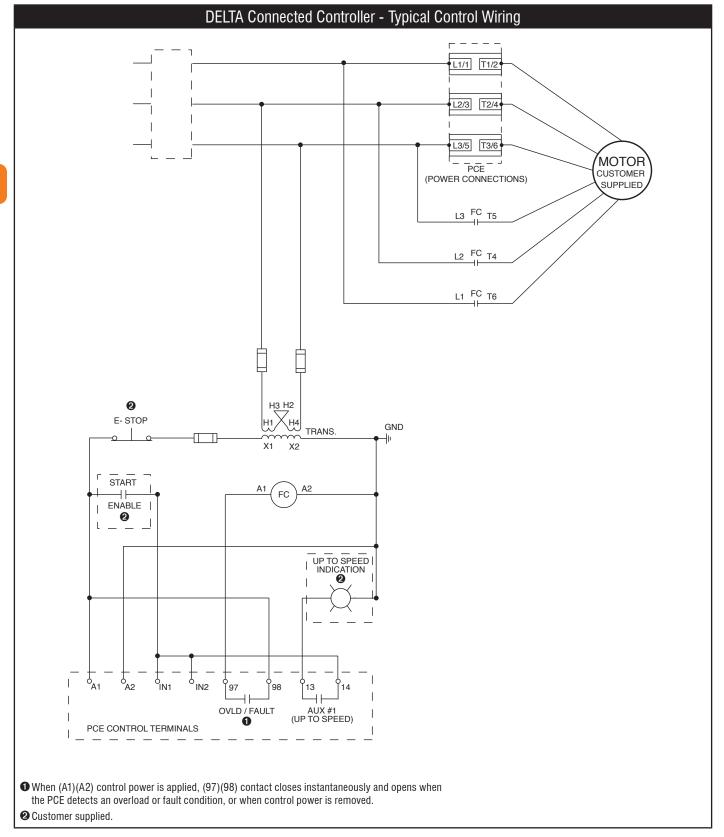
Motor Overload Trip Curves

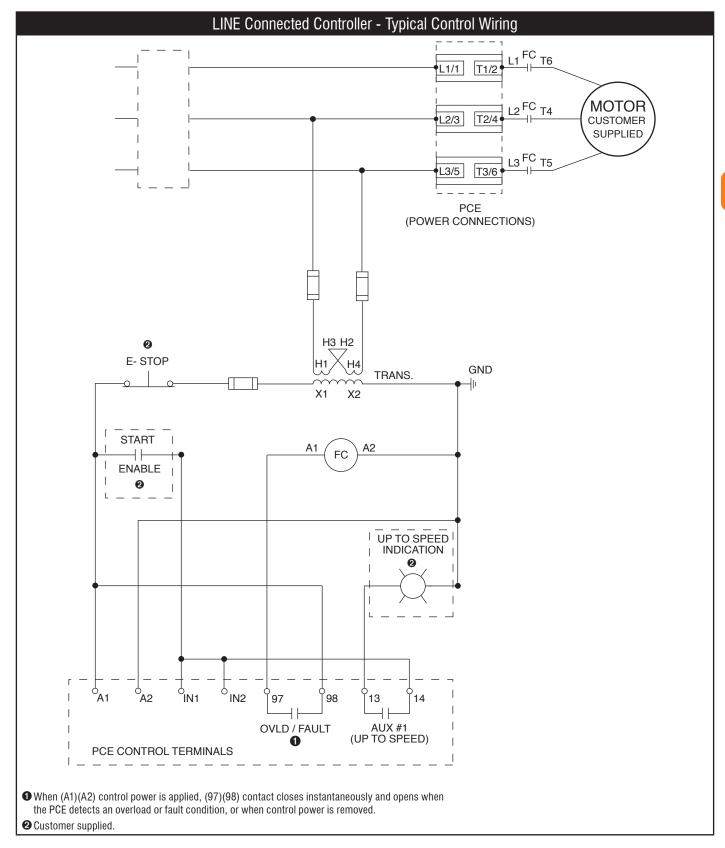

The trip class should be set according to the motors maximum permissible locked rotor time or the general thermal capabilities. Consult the motor manufacturer for recommendations on setting the trip class.


PCEC 234A

DELTA Connection Diagrams, Power, and Motor Wiring INCOMING LINE CONNECTIONS INCOMING LINE CONNECTIONS 1- CONTROL POWER (L) L2 L3 2- CONTROL COMMON (N) FC START ENABLE 13- UP TO SPEED INDICATION PCE PCE FC L2 L3 13 ○ ○ 3/L2 5/L3 \circ FC T4 T5 MOTOR CONNECTIONS 2/T1 4/T2 T2 ТЗ PCE CONTROL WIRES T2 T3 MOTOR CONNECTIONS MOTOR CONNECTIONS FAN - 234A ONLY PCEC 32...147A

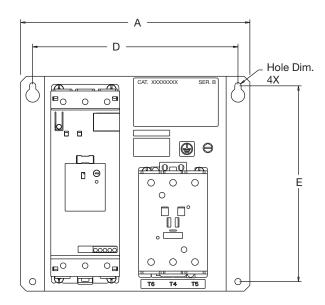


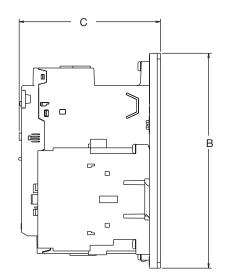

PCEC 234A



Note: The power wire configuration and DIP switch settings must be changed for the Line Connection method.

D68





PCEC Hydraulic Elevator Softstarter

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.

Controller Size	Units	A (Width)	B (Height)	C (Depth)	D	E	Hole Dim - 4x	Approx. Weight
32/51/64	mm	178	144	115.7	165.1	127.0	5.6	4 lbo (0 kg)
	in	7.01	5.67	4.56	6.50	5.00	0.22	4 lbs (2 kg)
74/104/147	mm	240	225	147.9	215	205	6.6	1.4 lbo (6 kg)
	in	9.45	8.86	5.82	8.46	8.07	0.260	14 lbs (6 kg)
234	mm	362	515	216.4	330.2	489.5	8.7	E1 lba (00 kg)
	in	14.25	20.28	8.52	13.00	19.27	0.343	51 lbs (23 kg)